Exercise 8

Find an equation of the tangent line to the curve at the given point.

$$
\begin{equation*}
y=\frac{2 x+1}{x+2} \tag{1,1}
\end{equation*}
$$

Solution

Start by finding the slope of the tangent line to the curve at $x=1$.

$$
\begin{aligned}
m=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1} & =\lim _{x \rightarrow 1} \frac{\frac{2 x+1}{x+2}-\frac{2(1)+1}{(1)+2}}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{2 x+1}{x+2}-1}{x-1} \\
& =\lim _{x \rightarrow 1} \frac{\frac{2 x+1}{x+2}(x+2)-1(x+2)}{(x-1)(x+2)} \\
& =\lim _{x \rightarrow 1} \frac{(2 x+1)-(x+2)}{(x-1)(x+2)} \\
& =\lim _{x \rightarrow 1} \frac{x-1}{(x-1)(x+2)} \\
& =\lim _{x \rightarrow 1} \frac{1}{x+2} \\
& =\frac{1}{(1)+2} \\
& =\frac{1}{3}
\end{aligned}
$$

The general equation of a line is

$$
y=m x+b
$$

Here the slope is $m=1 / 3$.

$$
y=\frac{1}{3} x+b
$$

Use the fact that the line passes through $(1,1)$ to determine b.

$$
\begin{gathered}
1=\frac{1}{3}(1)+b \\
1=\frac{1}{3}+b \\
b=\frac{2}{3}
\end{gathered}
$$

Therefore,

$$
y=\frac{1}{3} x+\frac{2}{3} .
$$

Below is a plot of the curve and the tangent line at $x=1$.

